Extensions 1→N→G→Q→1 with N=C2 and Q=C2×S32

Direct product G=N×Q with N=C2 and Q=C2×S32
dρLabelID
C22×S3224C2^2xS3^2144,192


Non-split extensions G=N.Q with N=C2 and Q=C2×S32
extensionφ:Q→Aut NdρLabelID
C2.1(C2×S32) = C4×S32central extension (φ=1)244C2.1(C2xS3^2)144,143
C2.2(C2×S32) = C2×S3×Dic3central extension (φ=1)48C2.2(C2xS3^2)144,146
C2.3(C2×S32) = C2×C6.D6central extension (φ=1)24C2.3(C2xS3^2)144,149
C2.4(C2×S32) = S3×Dic6central stem extension (φ=1)484-C2.4(C2xS3^2)144,137
C2.5(C2×S32) = D125S3central stem extension (φ=1)484-C2.5(C2xS3^2)144,138
C2.6(C2×S32) = D12⋊S3central stem extension (φ=1)244C2.6(C2xS3^2)144,139
C2.7(C2×S32) = Dic3.D6central stem extension (φ=1)244C2.7(C2xS3^2)144,140
C2.8(C2×S32) = D6.D6central stem extension (φ=1)244C2.8(C2xS3^2)144,141
C2.9(C2×S32) = D6.6D6central stem extension (φ=1)244+C2.9(C2xS3^2)144,142
C2.10(C2×S32) = S3×D12central stem extension (φ=1)244+C2.10(C2xS3^2)144,144
C2.11(C2×S32) = D6⋊D6central stem extension (φ=1)244C2.11(C2xS3^2)144,145
C2.12(C2×S32) = D6.3D6central stem extension (φ=1)244C2.12(C2xS3^2)144,147
C2.13(C2×S32) = D6.4D6central stem extension (φ=1)244-C2.13(C2xS3^2)144,148
C2.14(C2×S32) = C2×D6⋊S3central stem extension (φ=1)48C2.14(C2xS3^2)144,150
C2.15(C2×S32) = C2×C3⋊D12central stem extension (φ=1)24C2.15(C2xS3^2)144,151
C2.16(C2×S32) = C2×C322Q8central stem extension (φ=1)48C2.16(C2xS3^2)144,152
C2.17(C2×S32) = S3×C3⋊D4central stem extension (φ=1)244C2.17(C2xS3^2)144,153
C2.18(C2×S32) = Dic3⋊D6central stem extension (φ=1)124+C2.18(C2xS3^2)144,154

׿
×
𝔽